遥遥领先SMI quartz crystal oscillator电容匹配性。作为高品质水晶产品的领导者SMI公司。他们拥有多元化的选择空间,能够快速满足不断变化的技术需求,专注于创新和客户满意度。探索我们种类繁多的晶体设备,释放它们为您的电子项目提供的无限可能。
随之自身的实力增长,SMI公司开始不断拓展自身能力边界,通过研发设计各种各样优质高品质晶振为主导,向广泛应用程序提供性能优越,品质优良,低损耗低成本的OSC晶振,产品一经推出市场便得到移动通信设备,数码电子,小型设备,多媒体设备,智能家居,蓝牙耳机等领域的热烈追棒,同时也为SMI公司业绩创下新高。作为一家公司,我们致力于企业社会责任,并努力为我们的全球社会和客户提供价值.
为了自身强烈的使命感,以及对于高品质产品的追求,不断挑战行业的高标准高品质产品,经过漫长的沉淀与专注打磨,如今终于取得极小的成就,并发布新型的石英晶振产品,与此同时新产品的发布也推动了SMI公司的快速发展,作为一名行业的领先者SMI公司感到无比骄傲,能够为社会创造如此伟大的贡献。
为了更好满足用户的需求,SMI公司将利用几十年积累的经验,详细解答晶体振荡器相关问题.
晶体振荡器是一种电子电路,它利用通常由压电材料制成的振动晶体的机械共振来产生具有精确频率的电信号。该频率通常用于石英手表中以记录时间,用于数字集成电路中以提供稳定的时钟信号,并稳定无线电发射机和接收机的频率。
晶体振荡器被广泛使用的主要原因是它们能够提供高度稳定和精确的频率信号。它们不受微小温度变化和其他环境变化的影响,非常适合各种应用,包括时钟、计算机、电信设备和GPS系统。
晶体振荡器基于一种称为压电效应的特性工作。当电压施加到晶体上时,它以一个独特的频率振动,即它的共振频率。这种振动产生相当于相同频率的电信号,提供稳定的定时参考。遥遥领先SMI quartz crystal oscillator电容匹配性.
石英是晶体振荡器中最常用的材料,因为它具有压电特性和天然丰富性。然而,也可以使用其他材料,如罗谢尔盐或电气石。
石英晶体振荡器在各个领域都有应用。它们在数字集成电路中提供稳定的时钟信号,帮助天体导航和空间跟踪,并在测量仪器中发挥作用,以及其他用途。你可以在手表、电脑和智能手机上找到它们。
在贴片晶体振荡器中,负载电容(CL)代表晶体或振荡器在其工作电路中看到的电容。该参数至关重要,因为它会影响晶体的谐振频率。如果电路的负载电容与晶振的额定负载电容不一致,就会发生频率偏移。因此,在设计带晶体振荡器的电路时,确保晶体的总电容与额定负载电容相匹配至关重要。
选择晶振和振荡器时,设计考虑因素通常包括尺寸、成本、性能和功耗。晶体通常比振荡器更小、更便宜、功耗更低,但它们需要额外的外部电路来工作,并且可能提供与振荡器不同的性能稳定性水平。
晶体振荡器根据逆压电效应原理工作。当交流电压施加到石英晶体上时,它以其固有的共振频率振动。这种振动产生具有精确频率的电信号,可以同步电子设备的操作。
选择晶体振荡器时,应考虑几个因素,包括工作频率、频率稳定性、尺寸、功耗、温度范围和成本。您的应用程序的具体要求将决定哪些因素是最重要的。
晶体振荡器有许多优点:
Package
W x D x H
(mm)
Output
Frequency
(MHz)
Freq. Stability
(overall)
(ppm)
Supply Voltage
(VDD)
Ope. Temperature
21SMO
1.65x2.05x0.85
CMOS
1.5~80
±20~±100
+1.8~+3.3
-10~+70℃(Standard)
-20~+70℃(Standard)
-40~+85℃(Option)
22SMO
2.0x2.5x0.9
CMOS
1.5~170
±20~±100
+1.8~+3.3
-20~+70℃(Standard)
-40~+85℃(Option)
-40~+105℃(Option)
-40~+125℃(Option)
32SMO
2.5x3.2x1.0
CMOS
1.5~170
±20~±100
+1.8~+3.3
-20~+70℃(Standard)
-40~+85℃(Option)
-40~+105℃(Option)
-40~+125℃(Option)
22SMOLC
2.0x2.5x0.9
CMOS
1.25~50
±20~±100
+0.8~+1.5
-20~+70℃(Standard)
-40~+85℃(Option)
32SMOLC
2.5x3.2x1.0
CMOS
1.25~50
±20~±100
+0.8~+1.5
-20~+70℃(Standard)
-40~+85℃(Option)
99SMO
3.2x5.0x1.2
CMOS
1~220
±20~±100
+1.8~+5
-20~+70℃(Standard)
-40~+85℃(Option)
97SMO
5.0x7.0x1.3
CMOS
1~220
±20~±100
+1.8~+5
-20~+70℃(Standard)
-40~+85℃(Option)
22SMOHG
2.0x2.5x0.9
CMOS
4~55
±8~±15
+1.8~+3.3
-40~+85℃(Standard)
32SMOHG
2.5x3.2x1.0
CMOS
4~55
±8~±15
+1.8~+3.3
-40~+85℃(Standard)
99SMOHG
3.2x5.0x1.2
CMOS
4~55
±8~±15
+1.8~+3.3
-40~+85℃(Standard)
97SMOHG
5.0x7.0x1.3
CMOS
4~55
±10~±15
+1.8~+3.3
-40~+85℃(Standard)
97SMOHGU
5.0x7.0x1.3
CMOS
55~160
±8~±15
+1.8~+3.3
-40~+85℃(Standard)
99SMOHGU
3.2x5.0x1.2
CMOS
55~160
±8~±15
+1.8~+3.3
-40~+85℃(Standard)
32SMOHGU
2.5x3.2x1.0
CMOS
55~160
±8~±15
+1.8~+3.3
-40~+85℃(Standard)
57SMO
5.0x7.0x1.5
LVPECL
13.5~400
±20~±100
+2.5 or +3.3
-20~+70℃(Standard)
-40~+85℃(Option)
-40~+105℃(Option)
22SMO-LVP
2.0x2.5x0.9
LVPECL
6~175
±20~±100
+2.5 or +3.3
-20~+70℃(Standard)
-40~+85℃(Option)
-40~+105℃(Option)
32SMO-LVP
2.5x3.2x0.9
LVPECL
5~175
±20~±100
+2.5 or +3.3
-20~+70℃(Standard)
-40~+85℃(Option)
-40~+105℃(Option)
99SMO-LVP
3.2x5.0x1.2
LVPECL
5~250
±20~±100
+2.5 or +3.3
-20~+70℃(Standard)
-40~+85℃(Option)
-40~+105℃(Option)
67SMO
5.0x7.0x1.5
LVDS
13.5~350
±20~±100
+2.5 or +3.3
-20~+70℃(Standard)
-40~+85℃(Option)
22SMO-LVD
2.0x2.5x0.9
LVDS
5~175
±20~±100
+2.5 or +3.3
-20~+70℃(Standard)
-40~+85℃(Option)
32SMO-LVD
2.5x3.2x0.9
LVDS
5~175
±20~±100
+2.5 or +3.3
-20~+70℃(Standard)
-40~+85℃(Option)
99SMO-LVD
3.2x5.0x1.2
LVDS
5~250
±20~±100
+2.5 or +3.3
-20~+70℃(Standard)
-40~+85℃(Option)
77SMO
5.0x7.0x1.5
HCSL
13.5~220
±20~±100
+2.5 or +3.3
-20~+70℃(Standard)
-40~+85℃(Option)
-40~+105℃(Option)
32SMO-HCS
2.5x3.2x0.9
HCSL
13.5~175
±20~±100
+2.5 or +3.3
-20~+70℃(Standard)
-40~+85℃(Option)
99SMO-HCS
3.2x5.0x1.2
HCSL
13.5~220
±20~±100
+2.5 or +3.3
-20~+70℃(Standard)
-40~+85℃(Option)
-40~+105℃(Option)
Crystal oscillators are electronic circuits that utilize the mechanical resonance of a vibrating crystal, typically made from piezoelectric material, to generate an electric signal with a precise frequency. This frequency is often used in quartz wristwatches to keep time, in digital integrated circuits to provide a stable clock signal, and to stabilize frequencies for radio transmitters and receivers.
The primary reason crystal oscillators are so widely used is their ability to provide highly stable and accurate frequency signals. They remain unaffected by minor temperature shifts and other environmental changes, making them perfect for various applications, including clocks, computers, telecommunication devices, and GPS systems.
A crystal oscillator operates based on a property known as the Piezo-electric effect. When voltage is applied to the crystal, it vibrates at a unique frequency, its resonant frequency. This vibration produces an electrical signal equivalent to the same frequency, offering a stable timing reference.
Quartz is the most commonly used material in crystal oscillators due to its piezoelectric properties and natural abundance. However, other materials like Rochelle salt or tourmaline can also be utilized.
Crystal oscillators find uses across various sectors. They provide a stable clock signal in digital integrated circuits, aid in celestial navigation and space tracking, and feature in measuring instruments, among other uses. You can find them on wristwatches, computers, and smartphones.
In a crystal oscillator, load capacitance (CL) represents the capacitance seen by a crystal or oscillator in its operating circuit. This parameter is crucial as it affects the crystal’s resonant frequency. A frequency shift can occur if the circuit’s load capacitance doesn’t align with the crystal’s specified load capacitance. Hence, ensuring that the total capacitance seen by the crystal matches the specified load capacitance when designing a circuit with a crystal oscillator is vital.
When choosing between a crystal and an oscillator, design considerations often include size, cost, performance, and power consumption. Crystals are typically smaller, more affordable, and consume less power than oscillators, but they need additional external circuitry to operate and might offer different performance stability levels than oscillators.
A crystal oscillator functions on the principle of inverse piezoelectric effect. When an alternating voltage is applied to a quartz crystal, it vibrates at its natural resonant frequency. This vibration generates an electrical signal with a precise frequency, which can synchronize operations in electronic devices.
When choosing a crystal oscillator, several factors should be considered, including operating frequency, frequency stability, size, power consumption, temperature range, and cost. The specific requirements of your application will dictate which factors are most important.
Crystal oscillators offer numerous advantages: